
Architectural Fitness in Practice: 

Defining & Measuring your 
architecture goals with fitness 
functions



Rene Weiß
Consultant, Software & enterprise architect, 

pragmatic agile practitioner

Co-Author

Software Architecture Metrics

“The Fitness Function Testing 
Pyramid: An Analogy for 
Architectural Tests and Metrics”

rene@rw-it.consulting

xing.to/rweiss

@renebianco

linkedin.com/in/renebianco

linkedin.com/in/renebianco

www.rw-it.consulting

www.rw-it.consulting

Key focus areas

▪ Independent software / enterprise  architecture consultant

▪ Software architecture reviews (ATAM, ..)

▪ End-to-end transformation consultant 

(from „C-Level to development teams and back“ )

https://www.linkedin.com/in/renebianco/
https://www.linkedin.com/in/renebianco/


3Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

How did I start with “fitness functions”?
• First client requests (2019): 

• „We want to work have an evolutionary software architecture“ & 

• “Help us introduce fitness functions” – and no one knew what that really meant in 

practice.

• I saw the same pattern everywhere: 

• Architecture goals on slides (at best; or not even written down at all) 

• But nowhere: Concrete & measurable objectives or automated guardrails.

• Foundation: Building evolutionary architectures (Ford, Parsons, Kua)

• The concepts in there were too high-level to work with (my) teams on fitness functions

• I wanted something more concrete that teams can use in their work

• A former colleague and I wrote an article about it

This talk distills what worked in real projects into a 
practical way to define and measure architecture goals.

http://www.rw-it.consulting/


5Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Evolutionary architecture

An evolutionary architecture supports guided, incremental 

change across multiple dimensions.

❑ Architecture must evolve as requirements, scale, and constraints change.

❑ Key question: How do we know if a change improves or degrades the 

architecture?

→ Fitness functions make architectural change measurable.

Building Evolutionary Architectures (O ’Reilly, 2017)

http://www.rw-it.consulting/


6Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Fitness Function

Borrowed from evolutionary computing: 

A fitness function is an objective function, used to summarize 

how close a given design solution is to achieving the set aims.
Building Evolutionary Architectures (O’Reilly, 2017)

❑ Think of it as acceptance criteria for your architecture

❑ It makes an architecture concern explicit, measurable and 

verifiable instead of just a slide or principle

http://www.rw-it.consulting/


7Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Sample Fitness Function
Target

◼ Check if our test coverage is sufficient?

Implementation idea:

◼ Run integration tests

◼ Measure code coverage

Fitness 

Function(s):

▪ Integration test 

code coverage > 0.6

When:

◼ Every nightly integration-test build

http://www.rw-it.consulting/


11Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Fitness Function vs. Architectural test
Fitness Function(s):

▪ Integration test code coverage > 0.6

▪ + the context

Implementation idea:

◼ Run integration test

◼ Measure coverage

When:

◼ Every nightly integration-

test build

Where:

◼ CI/CD pipeline

Quality goal:

◼ Maintainability 

Automated 

verification of 

target metric

http://www.rw-it.consulting/


12Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Fitness Function context

Execution type

▪ Triggered 

▪ Continuous

Quality goal

▪ Maintainability

▪ Reliability

▪ Performance

▪ …

Monitoring type

▪ 0/1

▪ Value/Threshold

▪ Trend

Breadth of feedback

▪ Atomic 

▪ Holistic

Execution location

▪ CI/CD 

▪ Test environment

▪ Production

Fitness function 

lifecycle

▪ Temporary

▪ Permanent

This is my catalogue of building blocks to design a 
fitness function:

http://www.rw-it.consulting/


13Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Define your quality goals (= architecture goals)

Functional 

suitability
Performance Compatibility Usability

Reliability Security Maintain-

ability
Portability

(ISO 25010)

+ Add a short, context-specific definition: what does this goal mean for 
your system?

Example: Maintainability 
A small team can implement a typical feature (e.g., new business rule) without touching 
more than 2–3 modules, and without breaking existing customer journeys. 
The architecture supports safe refactoring through automated tests and clear module 
boundaries. The layered architecture is never violated.

http://www.rw-it.consulting/


15Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

How I would start with fitness functions…
❑ Write down your top 3 quality goals (dedicated *.md file for 

each quality goal; put the file in your repo)

❑ Describe your fitness functions and their context (use the 

catalog!) and the target metric (again, in an *.md file)

❑ Implement a test that verifies the target metric

What this actually is:

❑ The fitness function is architectural documentation

❑ Architectural documentation => architecture communication

❑ An automated test with the verification is the “icing on the cake”

These  *.md files become quite handy when working 

with tools like …

http://www.rw-it.consulting/


16Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Fitness Function quadrants

• Architecture rules as code

• Static code analysis (coupling, 

cyclomatic complexity, ..)

• Test coverage

• Unit level performance

• …
• SLOs for key user journeys

• Business KPI guardrails

• Canary analysis

• “Chaos engineering”

• …

• End2end scenario tests

• Staging load/performance tests

• Resilience experiments in staging 

(e.g. latency injection, …)

• …

• Single service SLOs

• Circuit Breaker / Timeout health

• Monitoring (transactions, queue 

length, resource budgets …)

• ...

atomic

holistic

continuoustriggered

Fitness 

Function(s):

▪ Integration test

code coverage > 0.6

http://www.rw-it.consulting/


17Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Sample Fitness Function (Microservices): 
Resilience Under Latency

Architecture goal (Quality goal):

Reliability — Critical user journeys must remain functional when downstream 
services become slow.

Fitness Function:

When Service B is degraded with +3000ms latency, the journey in Service A must 
still succeed without cascading failures.

Fitness Function Context:

▪ Execution type: Triggered (nightly)

▪ Monitoring type: 0/1 (test doesn’t fail)

▪ Breadth of feedback: Holistic 
(end-to-end journey)

▪ Execution location: Staging environment

▪ Test lifecycle: Permanent

Your are here now

http://www.rw-it.consulting/


18Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Quick detour: The testing pyramid

“…what does this have to 
do with fitness 
functions?”

http://www.rw-it.consulting/


19Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

The Fitness Function Testing pyramid

Fitness Function quadrants 
=> mapped to the pyramid

http://www.rw-it.consulting/


20Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Fitness Function Testing Pyramid – Example (Online Shop)
❑ Bottom layer: Cheap, atomic fitness functions

❑ Service boundary rule: No UI layer directly calls the database; all access goes through service 

APIs. (Tooling hint: ArchUnit)

❑ Dependency direction rule: checkout-service must not depend on catalog-service 

packages/modules (no compile-time coupling). (Tooling hint: ArchUnit)

❑ API contract compatibility: All public API changes must be backward compatible (consumer-

driven contract tests pass). (Tooling hint: Pact)

❑ Performance test (unit-level): Price calculation completes within < 50ms for 95% of cases (local 

benchmark).

❑ Resilience configuration guardrail: All outbound calls from checkout-service have timeouts + 

retries + circuit breaker configured (no “naked” HTTP calls).

❑ Middle layer: Broader, scenario-based fitness functions

❑ Resilience under latency (key journey): Inject +500ms latency 2 downstream services → 

Checkout still succeeds (no timeouts/cascading failures).

❑ End-to-end checkout SLO (staging): Full checkout flow is < 2500ms

❑ Top layer: Holistic fitness function

❑ Continual monitoring of checkout rate: Checkout completion rate per hour must stay above 65% 

(rolling average). If it drops below threshold, trigger incident investigation

http://www.rw-it.consulting/


21Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Recap – Fitness Function definition
❑ Fitness functions make architecture goals explicit and measurable

❑ Architectural tests / automated checks validate the target metrics 
in CI, test environments, or production.

❑Design fitness functions using the context catalog: 
execution type, quality goal, monitoring type, breadth, location, 
lifecycle.

❑ Choose the and define the quality goal first (e.g. ISO 25010)

❑ Pick the right level of feedback: 
atomic vs. holistic, triggered vs. continuous 
→ Fitness Function Testing Pyramid.

http://www.rw-it.consulting/


22Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Where to use GenAI?!

❑ Draft Quality Goals

❑ Draft Fitness Function

❑ Implement & maintain tests based on the quality goals and 

fitness functions

❑ Improve & refactor your codebase

You can use it as your assistant in every step…

This has become a lot easier now!! 

Just drafts!

You and the team (and the stakeholders) 

should decide on the final definitions!

It
e

ra
te

 a
s

 y
o

u
 l

e
a

rn
!

But YOU STILL OWN the changes and your code!

http://www.rw-it.consulting/


23Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

GenAI flow 1/3
full prompt at the end of slide-deck

Output (=> manually review/rework before proceeding):

GenAI „Inception“ : I used              to create the prompt above and manually tweaked it 

Quality goals – draft quality goals for my software

http://www.rw-it.consulting/


24Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

GenAI Flow 2/3
Fitness Functions – create draft fitness functions for “maintainability”

full prompt at the end of slide-deck

Output (=> manually review/rework before proceeding):

http://www.rw-it.consulting/


25Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

GenAI Flow 3/3
Implement first tests full prompt at the end of slide-deck

Output – automated tests:

<-- Test result 

http://www.rw-it.consulting/


27Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Key takeaways
❑ Start with a clear quality goal, then design the fitness function using the 

catalog (execution type, execution location, monitoring type, lifecycle)

❑ Apply the Fitness Function Testing Pyramid

❑ Cheap, atomic checks at the bottom for fast feedback

❑ Broader, scenario-based checks in the middle (cross-service / end-to-end)

❑ A few holistic checks at the top (SLOs / key journeys)

❑ Use GenAI to draft goals and propose candidate fitness functions—then 

validate, refine, and own the decision.

Fitness functions won’t replace architecture work—but they 

make architecture goals testable and continuously enforceable

Tomorrow: Pick one system, define 1-2 goals, formulate 2 fitness functions 

and automate a test → start at the bottom of the pyramid

http://www.rw-it.consulting/


28Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

THANK YOU!

rene@rw-it.consulting

xing.to/rweiss

@renebianco

linkedin.com/in/renebianco

linkedin.com/in/renebianco

www.rw-it.consulting

www.rw-it.consulting

http://www.rw-it.consulting/
https://www.linkedin.com/in/renebianco/
https://www.linkedin.com/in/renebianco/


29Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Resources
Claude prompt to draft quality goals
You are Claude Code acting as a senior software/enterprise architect.

Goal

- Define the top 3 architectural quality goals for THIS solution, using the 8 ISO/IEC 25010 product

quality characteristics as the candidate set.

- Write them to a dedicated file: quality_goals.md

- Add a link to that file from claude.md

ISO 25010 candidate categories (use these labels)

1) Functional suitability

2) Performance efficiency

3) Compatibility

4) Usability

5) Reliability

6) Security

7) Maintainability

8) Portability

Process (do not skip)

1) Understand the solution context from the repository:

- Read claude.md, README, docs/, package manifests, infra/deploy files, and skim key modules.

- Identify: primary users, deployment model, key data types (especially sensitive), availability

expectations, operational complexity, and expected change rate.

2) Select the TOP 3 ISO 25010 characteristics that are most architecturally important for this

solution.

- Do not pick “Functional suitability” unless there is a strong reason; architectural quality

goals should drive structural decisions beyond feature completeness.

- Avoid “everything is important.” Force trade-offs: pick only 3.

3) For each selected goal, write:

- A short plain-language meaning (2–4 sentences) tailored to this solution (not a generic textbook

definition).

- 2–4 concrete implications / architectural strategies (bullets). Keep them specific (e.g., 

“idempotent handlers,” “zero-trust service-to-service auth,” “SLO-driven error budgets,” “bounded

contexts,” etc.) based on what you observed in the repo.

- 2–3 lightweight acceptance signals (how we know we’re meeting it), ideally measurable (SLOs, 

test coverage type, latency budgets, RTO/RPO, severity targets, etc.). If exact numbers aren’t

knowable from repo context, propose reasonable defaults and label them as “initial targets.”

Output requirements

A) Create/overwrite file: quality_goals.md (repo root unless claude.md implies another docs

location).

- Title: “Architectural Quality Goals”

- One section per goal:

- “## <ISO25010 characteristic name>”

- “Meaning”

- “Implications for our architecture”

- Keep the entire file concise: ~10-15 lines max per goal

B) Update claude.md

- Add a clearly visible link to quality_goals.md using a relative markdown link: [Architectural

Quality Goals](./docs/architecture/quality_goals.md)

- Place it in the most appropriate existing section (e.g., Documentation, Architecture, 

Engineering Guidelines). If no suitable section exists, create a small “Documentation” or

“Architecture” section without disrupting the rest of the file.

- Do not remove or rewrite unrelated content.

Constraints

- Be opinionated and consistent with the repo’s reality. If the solution handles sensitive data, 

Security should likely be in the top 3; if it’s a platform component, Maintainability/Reliability

often dominate; if it’s user-facing and adoption-driven, Usability may matter.

- Do not invent domain facts. If something is uncertain, state the assumption briefly and keep going.

- Ensure both files format cleanly in Markdown.

Deliverables checklist (must satisfy)

- [ ] quality_goals.md exists with exactly 3 goals chosen from ISO 25010 and includes tailored

meaning + implications + acceptance signals

- [ ] claude.md contains a working link to ./docs/architecture/quality_goals.md

- [ ] No unrelated edits outside these documentation changes

http://www.rw-it.consulting/


30Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Resources
Claude prompt to define 2 fitness functions
You are Claude Code acting as a senior software/enterprise architect.

Goal

Create two concrete, sample architecture fitness functions for the ISO 25010 quality goal: 

Maintainability, based on our existing documentation (./docs/architecture/quality_goals.md)

Inputs

- Read and use: ./docs/architecture/quality_goals.md

- Read and update: ./claude.md

Task A — Create file

Create/overwrite: ./docs/architecture/fitness_functions_maintainability.md

File requirements

- Title: “Fitness Functions — Maintainability”

- Include exactly 2 fitness functions.

- They must be concrete and automatable in a typical engineering setup (CI/CD and/or production), 

with measurable targets.

- Each must clearly map back to the Maintainability quality goal in 

./docs/architecture/quality_goals.md.

- Keep it concise and practical; no filler.

Each fitness function MUST be formatted like this:

## <Short fitness function name>

**Description:** <1–3 sentences>

**Target metric:** <specific metric and target, e.g., thresholds, budgets, trend direction>

**Context**

- Execution type: <Triggered|Continuous>

- Monitoring type: <0/1|Value/Threshold|Trend>

- Breadth of feedback: <Atomic|Holistic>

- Execution location: <CI/CD|Test environment|Production>

- Fitness function lifecycle: <Temporary|Permanent>

- Quality goal reference: <exact maintainability goal heading from quality_goals.md>

**How to implement (draft and concise; maximum 10 lines):**

- <2–3 bullets describing how it would be automated, what tool signals/artifacts it uses (e.g., 

linting, complexity, architecture tests, code ownership, dependency graphs, test coverage on changed

files, etc.)>

- <Be specific, but do not invent repo-specific tools if not present; if uncertain, state a 

reasonable assumption explicitly.>

Task B — Update claude.md

1) Add a link to the new file using a relative Markdown link:

[Fitness Functions — Maintainability](./docs/architecture/fitness_functions_maintainability.md)

2) Place the section and link in the most appropriate existing location (Architecture / ...). 

Constraints

- Do not modify unrelated content.

- Do not guess the content of quality_goals.md: read it and reference the exact maintainability

wording/heading.

- Ensure links are correct and render in Markdown.

Deliverables checklist

- [ ] ./docs/architecture/fitness_functions_maintainability.md created with exactly 2 maintainability

fitness functions

- [ ] ./claude.md updated with: link to the maintainability fitness function file

- [ ] No unrelated edits

http://www.rw-it.consulting/


31Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Resources
Claude prompt to implement 2 tests for fitness functions
You are Claude Code acting as a senior TypeScript engineer and guardian of the architecture-

governance.

Goal

Add an executable “fitness function test” run target using pnpm, and implement maintainability

fitness function tests in a dedicated test file.

Repository analysis (do not skip)

1) Inspect the repo to determine:

- Package manager usage (pnpm workspace), Node version constraints, TypeScript config

- Test framework in use (Vitest), test folder conventions, and current scripts in package.json

2) Locate the fitness function definition file:

- ./docs/architecture/fitness_functions_maintainability.md

- Read it and identify the two fitness functions, their target metrics, and how they should be

verified.

3) Determine what is realistically automatable using repo artifacts (source tree, tsconfig, eslint

config, coverage outputs, dependency graph tools, etc.).

- Do not invent tools. Use what is already present in devDependencies and CI scripts.

- If a needed capability is missing, implement the check with lightweight TypeScript code 

(filesystem traversal, ts-morph, simple parsers) or add a minimal dependency ONLY if necessary and 

justified.

Implementation tasks

Task A — Add a dedicated pnpm run target

1) Update package.json (and workspace package.json if applicable) to add a script that runs ONLY the

fitness function tests.

- Name the script clearly, e.g.:

- "test:fitness" (preferred)

- It must not run the full test suite.

- It must be compatible with the test runner already used in the repo.

- It must target ONLY tests under: /tests/fitness_function/**

2) If the test runner supports patterns/grep, configure it so:

- `pnpm test:fitness` executes only the fitness function tests.

- Existing `pnpm test` remains unchanged.

Task B — Implement maintainability fitness function tests

Create the file:

- /tests/fitness_function/maintainability.test.ts

This file must:

1) Implement tests that correspond to the maintainability fitness functions defined in:

- ./docs/architecture/fitness_functions_maintainability.md

2) For each fitness function, encode:

- The measurement logic (how to compute the metric)

- The assertion against the target threshold/goal

- Helpful failure messages that explain what violated the fitness function and how to remediate

3) The tests must be deterministic and fast:

- No network access

- No reliance on production systems

- Avoid heavyweight whole-repo compilation unless already the norm

Task C — Documentation update

Update ./claude.md to include:

- How to run the fitness function tests:

- `pnpm test:fitness`

- Where they live:

- `/tests/fitness_function/`

- A short note that fitness function tests are intended to provide automated evidence for

architectural quality goals.

Constraints

- Do not change unrelated behavior of the existing test suite.

- Do not add large new dependencies without strong justification.

- Keep changes minimal and idiomatic to the existing repo conventions.

- Ensure all added/modified files are formatted consistently with the repo.

Deliverables checklist

- [ ] package.json updated with `test:fitness` (or equivalent) that runs only

/tests/fitness_function/**

- [ ] /tests/fitness_function/maintainability.test.ts implemented to verify the maintainability

fitness functions defined in ./docs/architecture/fitness_functions_maintainability.md

- [ ] ./claude.md updated with instructions for running fitness function tests

- [ ] Existing test commands still work as before

http://www.rw-it.consulting/


32Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Resources
My claude.md with quality goals.md & fitness function catalog definition
## Architecture

- [Architectural Quality Goals](./docs/architecture/quality_goals.md) - Top 3 ISO 25010 quality

characteristics driving design decisions

### Fitness Function Definition

A fitness function is an executable (or continuously evaluated) check that provides objective evidence

a system is meeting an architectural quality goal. It defines what to measure and what "good" looks

like, and it is designed to be automated where possible.

**Fitness function fields** (must be used for each function):

1. **Fitness function description** - What the function checks

2. **Target metric** - What is measured and the threshold/target to verify

3. **Fitness function context**:

- **Execution type**: Triggered or Continuous

- **Monitoring type**: 0/1, Value/Threshold, Trend

- **Breadth of feedback**: Atomic or Holistic

- **Execution location**: CI/CD, Test environment, Production

- **Fitness function lifecycle**: Temporary or Permanent

- **Quality goal reference**: Must reference a quality goal from

[quality_goals.md](./docs/architecture/quality_goals.md) (use the exact heading/name)

http://www.rw-it.consulting/


33Architectural Fitness in Practice www.rw-it.consultingwww.rw-it.consulting

Resources
My fitness_functions_maintainability.md
# Fitness Functions — Maintainability

These fitness functions provide objective evidence that the system meets the

**Maintainability** quality goal defined in 

[quality_goals.md](./quality_goals.md).

---

## File Size Budget

**Description:** Enforces the architectural constraint that source files remain

small and focused (<200 lines). Large files increase cognitive load and make

safe, incremental changes harder.

**Target metric:** All TypeScript source files in `packages/` must have ≤200 

lines of code. Threshold: 0 violations.

**Context**

- Execution type: Triggered

- Monitoring type: 0/1

- Breadth of feedback: Atomic

- Execution location: CI/CD

- Fitness function lifecycle: Permanent

- Quality goal reference: Maintainability

**How to implement:**

- Run a script that counts lines per `.ts` file in `packages/backend/src/` and 

`packages/frontend/src/`, excluding test files and type declarations.

- Fail CI if any file exceeds 200 lines.

- Example: `find packages -name "*.ts" ! -name "*.test.ts" ! -name "*.d.ts" -

exec wc -l {} + | awk '$1 > 200 {print; exit 1}'`

---

## Layered Architecture Compliance

**Description:** Enforces unidirectional dependency flow between architectural

layers: `routes → services → db`. Reverse imports (e.g., a service importing

from routes, or db importing from services) break layer isolation, making

modules harder to test independently and increasing the risk of cascading

changes.

**Target metric:** Zero reverse-layer imports in backend source files. 

Threshold: 0 violations.

**Forbidden import directions:**

- `services/` must NOT import from `routes/`

- `db/` must NOT import from `routes/` or `services/`

- `middleware/` must NOT import from `routes/`

**Context**

- Execution type: Triggered

- Monitoring type: 0/1

- Breadth of feedback: Atomic

- Execution location: CI/CD

- Fitness function lifecycle: Permanent

- Quality goal reference: Maintainability

**How to implement:**

- Scan import statements in each layer directory and check for forbidden

patterns.

- Fail CI if any reverse-layer import is found.

- Example:

```bash

# Services must not import from routes

grep -rE "from ['\"].*routes" packages/backend/src/services/ && exit 1

# DB must not import from routes or services

grep -rE "from ['\"].*routes|from ['\"].*services" packages/backend/src/db/ && 

exit 1

# Middleware must not import from routes

grep -rE "from ['\"].*routes" packages/backend/src/middleware/ && exit 1

exit 0

```

http://www.rw-it.consulting/

	Default Section
	Slide 1: Architectural Fitness in Practice:   Defining & Measuring your architecture goals with fitness functions

	Vortrag
	Slide 2: Rene Weiß
	Slide 3: How did I start with “fitness functions”?
	Slide 5: Evolutionary architecture
	Slide 6: Fitness Function
	Slide 7: Sample Fitness Function
	Slide 11: Fitness Function vs. Architectural test
	Slide 12: Fitness Function context
	Slide 13: Define your quality goals (= architecture goals)
	Slide 15: How I would start with fitness functions…
	Slide 16: Fitness Function quadrants
	Slide 17: Sample Fitness Function (Microservices):  Resilience Under Latency
	Slide 18: Quick detour: The testing pyramid
	Slide 19: The Fitness Function Testing pyramid
	Slide 20: Fitness Function Testing Pyramid – Example (Online Shop)
	Slide 21: Recap – Fitness Function definition
	Slide 22: Where to use GenAI?!
	Slide 23: GenAI flow 1/3
	Slide 24: GenAI Flow 2/3
	Slide 25: GenAI Flow 3/3
	Slide 27: Key takeaways
	Slide 28: THANK YOU!
	Slide 29: Resources
	Slide 30: Resources
	Slide 31: Resources
	Slide 32: Resources
	Slide 33: Resources


