Architectural Fithess in Practice:

Defining & Measuring your

architecture goals with fithess
Rene Weiss IT Consulting functions

Rene Weif3

Consultant, Software & enterprise architect, E rene@rw-it.consulting
pragmatic agile practitioner
Key focus areas t @renebianco

= |ndependent software / enterprise architecture consultant

)(xing.to/rweiss

= Software architecture reviews (ATAM, ..)

= End-to-end transformation consultant _ _ _ _
(from ,C-Level to development teams and back* ©)) m linkedin.com/in/renebianco

ey Www. rw-it.consulting

O'REILLY

Software
Architecture Co-Author
Metrics

Case Studies to Improve the Quality SOftware ArCh itect u re M et ri CS

of Your Architecture

“The Fitness Function Testing
Pyramid: An Analogy for
Architectural Tests and Metrics”

Rene Weiss IT Consulting

https://www.linkedin.com/in/renebianco/
https://www.linkedin.com/in/renebianco/

How did | start with “fithess functions”?

« First client requests (2019):

* ,We want to work have an evolutionary software architecture” &
* “Help us introduce fitness functions” — and no one knew what that really meant in

praCtiCe.
. Building
| saw the same pattern everywhere: Evolutionary

Ar
* Architecture goals on slides (at best; or not even written down at all)

* But nowhere: Concrete & measurable objectives or automated guardrails. /
« Foundation: Building evolutionary architectures (Ford, Parsons, Kua)

* The concepts in there were too high-level to work with (my) teams on fitness functions
° | wanted something more concrete that teams can use in their work
* Aformer colleague and | wrote an article about it

\

| Javamagazin

m)
Evolutionire

This talk distills what worked in real projects into a At
practical way to define and measure architecture goals. . "

Architectural Fitness in Practice www. w-it.consulting

http://www.rw-it.consulting/

Evolutionary architecture

An evolutionary architecture supports guided, incremental

change across multiple dimensions.

/ Building Evolutionary Architectures (O’Reilly, 2017)

o Architecture must evolve as requirements, scale, and constraints change.
o Key question: How do we know if a change improves or degrades the
architecture?

- Fithness functions make architectural change measurable.

Architectural Fitness in Practice www. w-it.consulting

http://www.rw-it.consulting/

Fithess Function

Borrowed from evolutionary computing:

A fitness function is an objective function, used to summarize
how close a given design solution is to achieving the set aims.

/ Building Evolutionary Architectures (O’Reilly, 2017)

o Think of it as acceptance criteria for your architecture
o It makes an architecture concern explicit, measurable and
verifiable instead of just a slide or principle

Architectural Fitness in Practice www. w-it.consulting

http://www.rw-it.consulting/

Sample Fitness Function

Target
m Check if our test coverage is sufficient?

Fitness .F
Implementation idea: Function(s): X

s Run integration tests
s Measure code coverage " |ntegration test

code coverage > 0.6

When:
s Every nightly integration-test build

Architectural Fitness in Practice WWW. 'w-it.consulting

http://www.rw-it.consulting/

Fithess Function vs. Architectural test

Fitness Function(s):

= |ntegration test code coverage > 0.6
= + the context

Quality 9(_)3': N [Fitness function] el)[Target metrics]
= Maintainability)

Implements runnable

Implementation idea: Describes and testable versions Verifies and
= Run integration test ests for
s Measure coverage N\ ooovomooee ‘ — — '
) Fitness function | Influences }i (Architectural) ! Automated
context ; test/verification verification of
When: : . : target metric
= Every nightly integration-

test build

A
Where: —

m CI/CD pipeline

Architectural Fitness in Practice WWW. 'w-it.consulting

http://www.rw-it.consulting/

This is my catalogue of building blocks to design a

fithess function:

Quality goal
» Maintainability
= Reliability
» Performance

Execution type

= Triggered
= Continuous
U

<]

Monitoring type
= 0/1

= Value/Threshold
= Trend

‘vé.v Breadth of feedback
) = Atomic

@ = Holistic

Execution location
= CI/CD

= Test environment
= Production

Fitness function
lifecycle

= Temporary

= Permanent

Architectural Fitness in Practice

http://www.rw-it.consulting/

Define your quality goals (= architecture goals)
Functional ¢%%, {:g - .:" .
D suitability =% ® Performance Compatibility R Usability

o Reliability 9 Security 3)‘ Maintain- a Portability

ablllty (ISO 25010)

+ Add a short, context-specific definition: what does this goal mean for
your system?

Example: Maintainability
A small team can implement a typical feature (e.g., new business rule) without touching

more than 2-3 modules, and without breaking existing customer journeys.
The architecture supports safe refactoring through automated tests and clear module

boundaries. The layered architecture is never violated.

Architectural Fitness in Practice WWW. 'w-it.consulting

http://www.rw-it.consulting/

How | would start with fithess functions...

o Write down your top 3 quality goals (dedicated *.md file for
each quality goal; put the file in your repo)

o Describe your fitness functions and their context (use the
catalog!) and the target metric (again, in an *.md file)

0 Implement a test that verifies the target metric

These *.md files become quite handy when working

with tools like ...

What this actually is:

o The fithess function is architectural documentation
o Architectural documentation => architecture communication

0 An automated test with the verification is the “icing on the cake”

Architectural Fitness in Practice WWW.r'w-it.consulting 15

http://www.rw-it.consulting/

Fitness Function quadrants

* Architecture rules as code

« Static code analysis (coupling,
cyclomatic complexity, ..)

« Test coverage

* Unit level performance

. triggered

End2end scenario tests

Staging load/performance tests
Resilience experiments in staging
(e.g. latency injection, ...)

. ... holistic =

atomic

Single service SLOs

Circuit Breaker / Timeout health
Monitoring (transactions, queue
length, resource budgets ...)

Execution type
8 Triggered

= Continuous
D
\\

continuous |

Os for key user journeys
a&s KPI guardrails

“.vi » Atomic

@ = Holistic

é‘, Breadth of feedback

Fitness
Function(s):

" [ntegration test
code coverage > 0.6

Architectural Fitness in Practice

www. rw-it.consulting

http://www.rw-it.consulting/

Sample Fithess Function (Microservices):
Resilience Under Latency

Your are here now (S~

—0
Architecture goal (Quality goal): nolsic

Reliability — Critical user journeys must remain functional when downstream
services become slow.

Fithess Function: @

When Service B is degraded with +3000ms latency, the journey in Service A must
still succeed without cascading failures.

Fitness Function Context: » Breadth of feedback: Holistic

= Execution type: Triggered (nightly) (end-to-end journey)

= Monitoring type: 0/1 (test doesn't fail)
= Test lifecycle: Permanent

Architectural Fitness in Practice www. w-it.consulting

. triggered continuous

Execution location: Staging environment

http://www.rw-it.consulting/

Quick detour: The testing pyramid

Slow Expensive

2
o
2
S £
S Service integration 2
IS
=
Unit “.what does this have to
ni . .
do with fitness
functions?”
Fast Cheap

Architectural Fitness in Practice www. r'w-it.consulting 18

http://www.rw-it.consulting/

The Fitness Function Testing pyramid

Most Expensive

Fitness Function quadrants

Continuous => mapped to the pyramid

holistic

@

atomic

Triggered holistic/
continual atomic

Maintenance/running cost

. triggered continuous

Breadth of feedback on the whole system

Triggered atomic

holistic

Limited Cheap

Architectural Fitness in Practice www. w-it.consulting

http://www.rw-it.consulting/

Fitness Function Testing Pyramid - Example (Online Shop)

o Bottom layer: Cheap, atomic fithess functions

o Service boundary rule: No Ul layer directly calls the database; all access goes through service
APIs. (Tooling hint: ArchUnit)

o Dependency direction rule: checkout-service must not depend on catalog-service
packages/modules (no compile-time coupling). (Tooling hint: ArchUnit)

o APl contract compatibility: All public APl changes must be backward compatible (consumer-
driven contract tests pass). (Tooling hint: Pact)

o Performance test (unit-level): Price calculation completes within < 50ms for 95% of cases (local
benchmark).

o Resilience configuration guardrail: All outbound calls from checkout-service have timeouts +
retries + circuit breaker configured (no “naked” HTTP calls).

o Middle layer: Broader, scenario-based fithess functions
o Resilience under latency (key journey): Inject +500ms latency 2 downstream services —
Checkout still succeeds (no timeouts/cascading failures).
o End-to-end checkout SLO (staging): Full checkout flow is < 2500ms

o Top layer: Holistic fitness function
o Continual monitoring of checkout rate: Checkout completion rate per hour must stay above 65%
(rolling average). If it drops below threshold, trigger incident investigation

Architectural Fitness in Practice WWW.r'w-it.consulting 20

http://www.rw-it.consulting/

Recap - Fithess Function definition

d Fitness functions make architecture goals explicit and measurable

Q Architectural tests / automated checks validate the target metrics
INn Cl, test environments, or production.

d Design fithess functions using the context catalog:
execution type, quality goal, monitoring type, breadth, location,

lifecycle.
d Choose the and define the quality goal first (e.g. ISO 25010)
d Pick the right level of feedback: s cperve

atomic vs. holistic, triggered vs. continuous
3 Fitness Function Testing Pyramid.

Triggered holistic/
continual atomic

5
/ Triggered atomic \
A 4 \ 4

Cheap 21

Breadth of feedback on the whole system

o
3
[—
®

a

Architectural Fitness in Practice WWW. 'w-it.consulting

http://www.rw-it.consulting/

Where to use GenAl?!

You can use it as your assistant in every step...

. Just drafts!
0 Draft Quallty Goals 4—-""" You and the team (and the stakeholders)

should decide on the final definitions!

o Draft Fitness Function

o Implement & maintain tests based on the quality goals and
fitness functions N~

This has become a lot easier now!!

Iterate as you learn!

o Improve & refactor your codebase «

N\

But YOU STILL OWN the changes and your code!

Architectural Fitness in Practice www. w-it.consulting 22

http://www.rw-it.consulting/

GenAl flow 1/3

Quality goals — draft quality goals for my software full prompt at the end of slide-deck

* Claude Code

» You are Claude Code acting as a senior software/enterprise architect.

Goal
— Define the top 3 architectural quality goals for THIS solution, using the 8 ISO/IEC 25010 product quality characteristics as the candidate
set. - c

- Write them to a dedicated file: quality_goals.md 0utput (=> man uaIIy review/rework before proceedlng):

- Add a link to that file from claude.md

docs > architecture > ¥ quality_goals.md > 2b< # Architectural Quality Goals
1 P Architectural Quality Goals

IS0 25010 candidate categories (use these labels)
1) Functional suitability This document defines the top 3 quality characteristics (per ISO/IEC 2501@) driving architectural decisions for the Broker Document Extractor.
2) Performance efficiency
3) Compatibility

4) Usablllty ## Security

5) Reliability

6) Security s*Meaning:** All broker document content, extracted text, ISINs, amounts, and transaction history must remain on the user's local machine. The
7) Maintainability system must never transmit sensitive financial data to external services. This is not optional; it is a hard constraint for a tool processing

personal investment records.

8) Portability

xxImplications for our architecture:xx
Process {do not Sklp) - Network isolation: The only permitted HTTP target is " localhost:11434° (0Ollama). All other outbound connections are prohibited.

1) Understand the solution context from the repositor No cloud storage, no telemetry, no external logging services.

- Read claude.nd, READNE, docs/, package manifests, irjjSSltNauiu i g e e
— Identify: primary users, deployment model, key data Typ especially se) AVALLADILLITY exp , np LEXLLY,
and expected change rate.

2) Select the TOP 3 IS0 25010 characteristics that are most architecturally important for this solution.

— Do not pick “Functional suitability” unless there is a strong reason; architectural quality goals should drive structural decisions
beyond feature completeness.

- Avoid “everything is important.” Force trade-offs: pick only 3.

GenAl ,Inception* &): | used @ to create the prompt above and manually tweaked it

ChatGPT
Architectural Fitness in Practice WWW.r'w-it.consulting 23

http://www.rw-it.consulting/

GenAl Flow 2/3

Fitness Functions — create draft fitness functions for “maintainability”

» You are Claude Code acting as a senior software/enterprise architect.

Goal
Create two concrete, sample architecture fitness functions for the ISO 25010 quality goal: Maintainability, based on our existing documentation
(./docs/architecture/quality_goals.md)

Inputs
- Read and use: ./docs/architecture/quality_goals.md
- Read and update: ./claude.md

Task A — Create file
Create/overwrite: ./docs/architecture/fitness_functions_maintainability.md

File requivenents Output (=> manually review/rework before proceeding):

- Title: “Fitness Functions — Maintainability”
- Include exactly 2 fitness functions. . . . —— . . : R TF
- They must be czncrete and automatable in a typical engineering setup (CI/CD SRCSRACUCIICIITICIEE S IIUEESITL I EEGETCIHEIAN DA A S G EER T ERg VETRIETUELT IV
— Each must clearly map back to the Maintainability quality goal in ./docs/arc # Fitness Functions — Maintainability

- Keep it concise and practical; no filler.

Each fitness function MUST be formatted like this: These fitness functions provide objective evidence that the system meets the xxMaintainabilityxx quality goal
defined in [quality_goals.md]l(./quality_goals.md).

<Short fitness function name>
sokDescription:sk <1-3 sentences>
skTarget metric:xk <specific metric and target, e.g., thresholds, budgets, tre

kxContextkx - -
- Execution type: <Triggered|Continuous> ## File Size Budget
- Monitoring type: <@/1|Value/Threshold|Trend>
= E;:zﬂzgoﬁflzgggggﬁﬁ:<z?;ggigéggléﬁsi$:nment|Pr0duction> sxDescription:*x* Enforces the architectural constraint that source files remain small and focused (<200 lines).
- Fitness function lifecycle: <Temporary|Permanent> Large files increase cognitive load and make safe, incremental changes harder.

- Quality goal reference: <exact maintainability goal heading from quality_goa

. H = . H
fU” prompt at the end Of Sllde-deCk ::ik;]ahggei;n:e.:trlc #% All TypeScript source files in "packages/ must have =200 lines of code. Threshold: @
*kxkContextxx
- Execution type: Triggered

Monitoring type: /1

Breadth of feedback: Atomic

Execution location: CI/CD

Fitness function lifecycle: Permanent

Quality goal reference: Maintainability

Architectural Fitness in Practice WWW.r'w-it.consulting 24

http://www.rw-it.consulting/

GenAl Flow 3/3

Implement first tests

> You are Claude Code acting as a senior TypeScript engineer and guardian of the architecture-governance.

full prompt at the end of slide-deck

Goal
Add an executable “fitness function test” run target using pnpm, and implement maintainability fitness function tests in a dedicated test file.

Repository analysis (do not skip)

1) Inspect the repo to determine:

- Package manager usage (pnpm workspace), Node version constraints, TypeScript config

- Test framework in use (Vitest), test folder conventions, and current scripts in package.json

2) Locate the fitness function definition file:

- ./docs/architecture/fitness_functions_maintainability.md

- Read it and identify the two fitness functions, their target metrics, and how they should be verified.

3) Determine what is realistically automatable using repo artifacts (source tree, tsconfig, eslint config, coverage outputs, dependency graph tools, etc.).

- Do not invent tools. Use what is already present in devDependencies and CI scripts. 0 t t — t t d t t .
- If a needed capability is missing, implement the check with lightweight TypeScript code (filesystem traversal, ts-morph, simple parsers) or add a minimal dependency u pu au Oma e es s-
ONLY if necessary and justified.

Implementation tasks ¥ quality_goals.md (Index) tness_functions_maintainability.md TS maintainability.test.ts

Task A — Add a dedicated pnpm run target

1) Update package.json (and workspace package.json if applicable) to add a script that runs ONLY the fitness function tests.
- Name the script clearly, e.g.:

- "test:fitness" (preferred)

- It must not run the full test suite.

— It must be compatible with the test runner already used in the repo.

- It must target ONLY tests under: /tests/fitness_function/x

packages > backend > tests > fitness_function > TS maintainability.test.ts > ...

2) If the test runner supports patterns/grep, configure it so:
— “pnpm test:fitness® executes only the fitness function tests.
- Existing “pnpm test® remains unchanged.

renew@RenesMaWorkbook broker_document_extractor % pnpm —filter backend test:fitness

> backend@l.0.0 test:fitness /Users/renew/Documents/Development/broker_document_extractor/packages/backend
> vitest run tests/fitness_function

import { describe, it, expect } from 'vitest';
TN vi1.6.1 : . .
import { readFileSync, readdirSync, statSync } from
Y maintainability import { join, relative } from 'path';
v Maintainability Fitness Functions
v File Size Budget // Project root
+~ all production source files must be =200 lines .
v Layered Architecture Compliance constiRROJECTOR
+ layers must not import from forbidden layers (routes - services - db)

1 passed
2 passed

EE <-- Test result (H

Architectural Fitness in Practice WWW. 'w-it.consulting

http://www.rw-it.consulting/

Key takeaways

o Start with a clear quality goal, then design the fithess function using the
catalog (execution type, execution location, monitoring type, lifecycle)

o Apply the Fitness Function Testing Pyramid

o Cheap, atomic checks at the bottom for fast feedback
o Broader, scenario-based checks in the middle (cross-service / end-to-end)
o Afew holistic checks at the top (SLOs / key journeys)

o Use GenAl to draft goals and propose candidate fitness functions—then
validate, refine, and own the decision.

Fitness functions won’t replace architecture work—but they

make architecture goals testable and continuously enforceable

Tomorrow: Pick one system, define 1-2 goals, formulate 2 fitness functions
and automate a test - start at the bottom of the pyramid

Architectural Fitness in Practice WWW. 'w-it.consulting

http://www.rw-it.consulting/

THANK YOU!

><] rene@rw-it.consulting

& @renebianco

)(xing.to/rweiss

m: linkedin.com/in/renebianco

<4db>.

===} Www. rw-it.consulting

Architectural Fitness in Practice WWW.r'w-it.consulting 28

http://www.rw-it.consulting/
https://www.linkedin.com/in/renebianco/
https://www.linkedin.com/in/renebianco/

Resources
Claude prompt to draft quality goals

You are Claude Code acting as a senior software/enterprise architect. B) Update claude.md
- Add a clearly visible link to quality goals.md using a relative markdown link: [Architectural
Goal Quality Goals] (./docs/architecture/quality goals.md)
- Define the top 3 architectural quality goals for THIS solution, using the 8 ISO/IEC 25010 product - Place it in the most appropriate existing section (e.g., Documentation, Architecture,
quality characteristics as the candidate set. Engineering Guidelines). If no suitable section exists, create a small “Documentation” or
- Write them to a dedicated file: quality goals.md “Architecture” section without disrupting the rest of the file.
- Add a link to that file from claude.md - Do not remove or rewrite unrelated content.
ISO 25010 candidate categories (use these labels) Constraints
1) Functional suitability - Be opinionated and consistent with the repo’s reality. If the solution handles sensitive data,
2) Performance efficiency Security should likely be in the top 3; if it’s a platform component, Maintainability/Reliability
3) Compatibility often dominate; if it’s user-facing and adoption-driven, Usability may matter.
4) Usability - Do not invent domain facts. If something is uncertain, state the assumption briefly and keep going.
5) Reliability - Ensure both files format cleanly in Markdown.
6) Security
7) Maintainability Deliverables checklist (must satisfy)
8) Portability - [] quality _goals.md exists with exactly 3 goals chosen from ISO 25010 and includes tailored
meaning + implications + acceptance signals
Process (do not skip) - [] claude.md contains a working link to ./docs/architecture/quality goals.md
1) Understand the solution context from the repository: - [] No unrelated edits outside these documentation changes N

- Read claude.md, README, docs/, package manifests, infra/deploy files, and skim key modules.

- Identify: primary users, deployment model, key data types (especially sensitive), availability
expectations, operational complexity, and expected change rate.

2) Select the TOP 3 ISO 25010 characteristics that are most architecturally important for this
solution.

- Do not pick “Functional suitability” unless there is a strong reason; architectural quality
goals should drive structural decisions beyond feature completeness.

- Avoid “everything is important.” Force trade-offs: pick only 3.

3) For each selected goal, write:

- A short plain-language meaning (2-4 sentences) tailored to this solution (not a generic textbook
definition) .

- 2-4 concrete implications / architectural strategies (bullets). Keep them specific (e.g.,
“idempotent handlers,” “zero-trust service-to-service auth,” “SIO-driven error budgets,” “bounded
contexts,” etc.) based on what you observed in the repo.

- 2-3 lightweight acceptance signals (how we know we’re meeting it), ideally measurable (SLOs,
test coverage type, latency budgets, RTO/RPO, severity targets, etc.). If exact numbers aren’t
knowable from repo context, propose reasonable defaults and label them as “initial targets.”

Output requirements
A) Create/overwrite file: quality goals.md (repo root unless claude.md implies another docs
location) . N
- Title: “Architectural Quality Goals”
- One section per goal:
- “## <IS025010 characteristic name>”
- “Meaning”
- “Implications for our architecture”
- Keep the entire file concise: ~10-15 lines max per goal

Architectural Fitness in Practice www. r'w-it.consulting 29

http://www.rw-it.consulting/

Resources

Claude prompt to define 2 fithess functions

You are Claude Code acting as a senior software/enterprise architect.

Constraints
Goal - Do not modify unrelated content.
Create two concrete, sample architecture fitness functions for the ISO 25010 quality goal: - Do not guess the content of quality goals.md: read it and reference the exact maintainability
Maintainability, based on our existing documentation (./docs/architecture/quality goals.md) wording/heading. B
- Ensure links are correct and render in Markdown.
Inputs
- Read and use: ./docs/architecture/quality goals.md Deliverables checklist
- Read and update: ./claude.md - [] ./docs/architecture/fitness functions maintainability.md created with exactly 2 maintainability
fitness functions
Task A — Create file - [1 ./claude.md updated with: link to the maintainability fitness function file
Create/overwrite: ./docs/architecture/fitness_functions maintainability.md - [] No unrelated edits

File requirements

- Title: “Fitness Functions — Maintainability”

- Include exactly 2 fitness functions.

- They must be concrete and automatable in a typical engineering setup (CI/CD and/or production),
with measurable targets.

- Each must clearly map back to the Maintainability quality goal in
./docs/architecture/quality goals.md.

- Keep it concise and practical; no filler.

Each fitness function MUST be formatted like this:

<Short fitness function name>
Description: <1-3 sentences>
Target metric: <specific metric and target, e.g., thresholds, budgets, trend direction>

Context

- Execution type: <Triggered|Continuous>

- Monitoring type: <0/1|Value/Threshold|Trend>

- Breadth of feedback: <Atomic|Holistic>

- Execution location: <CI/CD|Test environment|Production>

- Fitness function lifecycle: <Temporary|Permanent>

- Quality goal reference: <exact maintainability goal heading from quality goals.md>

How to implement (draft and concise; maximum 10 lines) :

- <2-3 bullets describing how it would be automated, what tool signals/artifacts it uses (e.g.,
linting, complexity, architecture tests, code ownership, dependency graphs, test coverage on changed
files, etc.)>

- <Be specific, but do not invent repo-specific tools if not present; if uncertain, state a
reasonable assumption explicitly.>

Task B — Update claude.md
1) Add a link to the new file using a relative Markdown link:

[Fitness Functions — Maintainability] (./docs/architecture/fitness functions maintainability.md)
2) Place the section and link in the most appropriate existing location (Architecture / ...).

Architectural Fitness in Practice www. r'w-it.consulting 30

http://www.rw-it.consulting/

Resources

Claude prompt to implement 2 tests for fitness functions

You are Claude Code acting as a senior TypeScript engineer and guardian of the architecture-
governance.

Goal
Add an executable “fitness function test” run target using pnpm, and implement maintainability
fitness function tests in a dedicated test file.

Repository analysis (do not skip)
1) Inspect the repo to determine:

- Package manager usage (pnpm workspace), Node version constraints, TypeScript config

- Test framework in use (Vitest), test folder conventions, and current scripts in package.json
2) Locate the fitness function definition file:

- ./docs/architecture/fitness functions maintainability.md

- Read it and identify the two fitness Eunctions, their target metrics, and how they should be
verified.
3) Determine what is realistically automatable using repo artifacts
config, coverage outputs, dependency graph tools, etc.).

- Do not invent tools. Use what is already present in devDependencies and CI scripts.

- If a needed capability is missing, implement the check with lightweight TypeScript code
(filesystem traversal, ts-morph, simple parsers) or add a minimal dependency ONLY if necessary and
justified.

(source tree, tsconfig, eslint

Implementation tasks

Task A — Add a dedicated pnpm run target
1) Update package.json (and workspace package.json if applicable) to add a script that runs ONLY the
fitness function tests.

- Name the script clearly, e.g.

- "test:fitness" (preferred)

- It must not run the full test suite.

- It must be compatible with the test runner already used in the repo.

- It must target ONLY tests under: /tests/fitness_function/**

2) If the test runner supports patterns/grep, configure it so:
- ‘pnpm test:fitness' executes only the fitness function tests.
- Existing “pnpm test’ remains unchanged.

Task B — Implement maintainability fitness function tests
Create the file:
- /tests/fitness function/maintainability.test.ts

This file must:
1) Implement tests that correspond to the maintainability fitness functions defined in:
- ./docs/architecture/fitness_functions maintainability.md

2) For each fitness function, encode:
- The measurement logic (how to compute the metric
- The assertion against the target threshold/goal

- Helpful failure messages that explain what violated the fitness function and how to remediate

3) The tests must be deterministic and fast:
- No network access
- No reliance on production systems
- Avoid heavyweight whole-repo compilation unless already the norm

Task C — Documentation update
Update ./claude.md to include:
- How to run the fitness function tests:
- ‘pnpm test:fitness’
- Where they live:
- “/tests/fitness function/®
- A short note that fitness function tests are intended to provide automated evidence for
architectural quality goals.

Constraints

- Do not change unrelated behavior of the existing test suite.

- Do not add large new dependencies without strong justification.

- Keep changes minimal and idiomatic to the existing repo conventions.

- Ensure all added/modified files are formatted consistently with the repo.

Deliverables checklist

- [] package.json updated with “test:fitness’
/tests/fitness function/**

- [/tests/fftnessifunction/maintainability.test.ts implemented to verify the maintainability
fitness functions defined in ./docs/architecture/fitness functions maintainability.md

- [1 ./claude.md updated with instructions for running fitness function tests

- [] Existing test commands still work as before

(or equivalent) that runs only

Architectural Fitness in Practice

www. r'w-it.consulting

http://www.rw-it.consulting/

Resources

My claude.md with quality goals.md & fithess function catalog definition

Architecture
- [Architectural Quality Goals] (./docs/architecture/quality goals.md) - Top 3 ISO 25010 quality
characteristics driving design decisions

Fitness Function Definition

A fitness function is an executable (or continuously evaluated) check that provides objective evidence
a system is meeting an architectural quality goal. It defines what to measure and what "good" looks
like, and it is designed to be automated where possible.

Fitness function fields (must be used for each function):

1. **Fitness function description** - What the function checks

2. **Target metric** - What is measured and the threshold/target to verify
3. **Fitness function context**:

- **Execution type**: Triggered or Continuous

- **Monitoring type**: 0/1, Value/Threshold, Trend

- **Breadth of feedback**: Atomic or Holistic

- **Execution location**: CI/CD, Test environment, Production

- **Fjitness function lifecycle**: Temporary or Permanent

- **Quality goal reference**: Must reference a quality goal from

[quality goals.md] (./docs/architecture/quality goals.md) (use the exact heading/name)

Architectural Fitness in Practice WWW. 'w-it.consulting

http://www.rw-it.consulting/

Resources

My fithess_functions_maintainability.md

Fitness Functions — Maintainability
These fitness functions provide objective evidence that the system meets the

Maintainability quality goal defined in
[quality goals.md] (./quality goals.md) .

File Size Budget
Description: Enforces the architectural constraint that source files remain
small and focused (<200 lines). Large files increase cognitive load and make

safe, incremental changes harder.

Target metric: All TypeScript source files in ‘packages/' must have <200

lines of code. Threshold: 0 violations.
Context

- Execution type: Triggered

- Monitoring type: 0/1

- Breadth of feedback: Atomic

- Execution location: CI/CD

- Fitness function lifecycle: Permanent

- Quality goal reference: Maintainability

How to implement:

- Run a script that counts lines per “.ts’ file in “packages/backend/src/" and
‘packages/frontend/src/", excluding test files and type declarations.

- Fail CI if any file exceeds 200 lines.

- Example: “find packages -name "*.ts" ! -name "*.test.ts" !
exec wc -1 {} + | awk '$1 > 200 {print; exit 1}'"

-name "*.d.ts" -

Layered Architecture Compliance

Description: Enforces unidirectional dependency flow between architectural

layers: ‘routes — services — db . Reverse imports (e.g., a service importing
from routes, or db importing from services) break layer isolation, making
modules harder to test independently and increasing the risk of cascading
changes.

Target metric: Zero reverse-layer imports in backend source files.
Threshold: 0 violations.

Forbidden import directions:

- “services/ must NOT import from ‘routes/®

- "do/’ must NOT import from ‘routes/' or “services/’
- ‘middleware/’ must NOT import from ‘routes/’

Context

- Execution type: Triggered

- Monitoring type: 0/1

- Breadth of feedback: Atomic

- Execution location: CI/CD

- Fitness function lifecycle: Permanent

- Quality goal reference: Maintainability

How to implement:
- Scan import statements in each layer directory and check for forbidden

patterns.
- Fail CI if any reverse-layer import is found.
- Example:
" "bash
Services must not import from routes
grep -rE "from ['\"].*routes" packages/backend/src/services/ && exit 1
DB must not import from routes or services
grep -rE "from ['\"].*routes|from ['\"].*services" packages/backend/src/db/ &&
exit 1

Middleware must not import from routes
grep -rE "from ['\"].*routes" packages/backend/src/middleware/ && exit 1
exit 0

Architectural Fitness in Practice

www. r'w-it.consulting

http://www.rw-it.consulting/

	Default Section
	Slide 1: Architectural Fitness in Practice: Defining & Measuring your architecture goals with fitness functions

	Vortrag
	Slide 2: Rene Weiß
	Slide 3: How did I start with “fitness functions”?
	Slide 5: Evolutionary architecture
	Slide 6: Fitness Function
	Slide 7: Sample Fitness Function
	Slide 11: Fitness Function vs. Architectural test
	Slide 12: Fitness Function context
	Slide 13: Define your quality goals (= architecture goals)
	Slide 15: How I would start with fitness functions…
	Slide 16: Fitness Function quadrants
	Slide 17: Sample Fitness Function (Microservices): Resilience Under Latency
	Slide 18: Quick detour: The testing pyramid
	Slide 19: The Fitness Function Testing pyramid
	Slide 20: Fitness Function Testing Pyramid – Example (Online Shop)
	Slide 21: Recap – Fitness Function definition
	Slide 22: Where to use GenAI?!
	Slide 23: GenAI flow 1/3
	Slide 24: GenAI Flow 2/3
	Slide 25: GenAI Flow 3/3
	Slide 27: Key takeaways
	Slide 28: THANK YOU!
	Slide 29: Resources
	Slide 30: Resources
	Slide 31: Resources
	Slide 32: Resources
	Slide 33: Resources

